Let $N$ denote the number that turns up when a fair die is rolled. If the probability that the system of equations
$x+y+z=1$ ; $2 x+N y+2 z=2$ ; $3 x+3 y+N z=3$
has unique solution is $\frac{k}{6}$, then the sum of value of $k$ and all possible values of $N$ is
$18$
$19$
$20$
$21$
Let the system of equations $x+2 y+3 z=5$, $2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to :
Find values of $\mathrm{k}$ if area of triangle is $4$ square units and vertices are $(-2,0),(0,4),(0, \mathrm{k})$
The system of equations ${x_1} - {x_2} + {x_3} = 2,$ $\,3{x_1} - {x_2} + 2{x_3} = - 6$ and $3{x_1} + {x_2} + {x_3} = - 18$ has
If $a \ne p,b \ne q,c \ne r$ and $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ =$ 0$, then $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $
Let the system of linear equations $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ , have infinitely many solutions. Then the system $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10 \text { has : }$