Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

The tangent to the hyperbola $xy = c^2$  at the point $P$  intersects the $x-$ axis at $T$ and the $y-$ axis at $T'$. The normal to the hyperbola at $P$ intersects the $ x-$ axis at $N$  and the $y-$ axis at $N'$. The areas of the triangles $PNT$  and $PN'T' $ are $ \Delta$  and $ \Delta ' $ respectively, then $\frac{1}{\Delta }\,\, + \,\,\frac{1}{{\Delta '}}\,$ is

A

equal to $ 1$ 

B

depends on $ t$

C

depends on $c$

D

equal to $2$

Solution

Tangent : $\frac{x}{{ct}} + \frac{{yt}}{c} = 2$ 
put $y = 0$    $x = 2ct (T)$
$x = 0$     $y = \frac{{2c}}{t}(T')$ 
paralleily normal  is $y -\frac{c}{t}$ $= t^2(x – ct)$
put $y = 0$   $x = ct – \frac{c}{{{t^3}}}(N)$ 
$x = 0 $   $\frac{c}{t}$ $ – ct^3 (N')$
Area of $\Delta PNT$ $=\frac{c}{{2t}}\left( {ct + \frac{c}{{{t^3}}}} \right)$  $\Rightarrow$ $\Delta$  $=$ $\frac{{{c^2}(1 + {t^4})}}{{2{t^4}}}$ 
Area of $ \Delta PN'T'$  $=$ $ct\left( {\frac{c}{t} + c{t^3}} \right)$  $\Rightarrow$ $\Delta ' $ $ = $ $\frac{{{c^2}(1 + {t^4})}}{2}$
$\therefore$ $\frac{1}{\Delta } + \frac{1}{{\Delta '}}$ $=$  $\frac{{2{t^4}}}{{{c^2}(1 + {t^4})}} + \frac{2}{{{c^2}(1 + {t^4})}}$ $= $ $\frac{2}{{{c^2}(1 + {t^4})}}$ $(t^4 + 1) $ $=$ $\frac{2}{{{c^2}}}$
 which is independent of $t.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.