10-2. Parabola, Ellipse, Hyperbola
medium

Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 3 \sqrt{5},\,0),$ the latus rectum is of length $8$

A

$\frac{x^{2}}{25}-\frac{y^{2}}{20}=1$

B

$\frac{x^{2}}{25}-\frac{y^{2}}{20}=1$

C

$\frac{x^{2}}{25}-\frac{y^{2}}{20}=1$

D

$\frac{x^{2}}{25}-\frac{y^{2}}{20}=1$

Solution

Foci $(\pm 3 \sqrt{5},\, 0),$ the latus rectum is of length $8$.

Here, the foci are on the $x-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

since the foci are $(\pm 3 \sqrt{5}, \,0)$,  $c=\pm 3 \sqrt{5}$

Length of latus rectum $=8$

$\Rightarrow \frac{2 b^{2}}{a}=8$

$\Rightarrow b^{2}=4 a$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore a^{2}+4 a=45$

$\Rightarrow a^{2}+4 a-45=0$

$\Rightarrow a^{2}+9 a-5 a-45=0$

$\Rightarrow(a+9)(a-5)=0$

$\Rightarrow a=-9,5$

since a is non-negative, $a=5$

$\therefore b^{2}=4 a=4 \times 5=20$

Thus, the equation of the hyperbola is $\frac{x^{2}}{25}-\frac{y^{2}}{20}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.