- Home
- Standard 11
- Physics
10-2.Transmission of Heat
medium
The temperature $\theta$ at the junction of two insulating sheets, having thermal resistances $R _{1}$ and $R _{2}$ as well as top and bottom temperatures $\theta_{1}$ and $\theta_{2}$ (as shown in figure) is given by

A
$\frac{\theta_{1} R_{1}+\theta_{2} R_{2}}{R_{1}+R_{2}}$
B
$\frac{\theta_{1} R _{2}-\theta_{2} R _{1}}{ R _{2}- R _{1}}$
C
$\frac{\theta_{1} R _{2}+\theta_{2} R _{1}}{ R _{1}+ R _{2}}$
D
$\frac{\theta_{1} R_{1}+\theta_{2} R_{2}}{R_{1}+R_{2}}$
(JEE MAIN-2021)
Solution

Heat flow rate will be same through both
$\therefore \frac{\theta_{1}-\theta}{ R _{1}}=\frac{\theta-\theta_{2}}{ R _{2}}$
$R _{2} \theta_{1}- R _{2} \theta= R _{1} \theta- R _{1} \theta_{2}$
$\theta=\frac{ R _{2} \theta_{1}+ R _{1} \theta_{2}}{ R _{1}+ R _{2}}$
Standard 11
Physics
Similar Questions
medium