The temperature $\theta$ at the junction of two insulating sheets, having thermal resistances $R _{1}$ and $R _{2}$ as well as top and bottom temperatures $\theta_{1}$ and $\theta_{2}$ (as shown in figure) is given by
$\frac{\theta_{1} R_{1}+\theta_{2} R_{2}}{R_{1}+R_{2}}$
$\frac{\theta_{1} R _{2}-\theta_{2} R _{1}}{ R _{2}- R _{1}}$
$\frac{\theta_{1} R _{2}+\theta_{2} R _{1}}{ R _{1}+ R _{2}}$
$\frac{\theta_{1} R_{1}+\theta_{2} R_{2}}{R_{1}+R_{2}}$
A heat source at $T = 10^3\, K$ is connected to another heat reservoir at $T = 10^2\, K$ by a copper slab which is $1\, m$ thick. Given that the thermal conductivity of copper is $0.1\, WK^{-1}\, m^{-1}$, the energy flux through it in the steady state is ........... $Wm^{-2}$
The dimensions of thermal resistance are
A slab of stone of area $0.36\;m ^2$ and thickness $0.1 \;m$ is exposed on the lower surface to steam at $100^{\circ} C$. A block of ice at $0^{\circ} C$ rests on the upper surface of the slab. In one hour $4.8\; kg$ of ice is melted. The thermal conductivity of slab is .......... $J / m / s /{ }^{\circ} C$ (Given latent heat of fusion of ice $=3.36 \times 10^5\; J kg ^{-1}$)
A cylindrical metallic rod in thermal contact with two reservoirs of heat at its two ends conducts an amount of heat $Q$ in time $t$. The metallic rod is melted and the material is formed into a rod of half the radius of the original rod. What is the amount of heat conducted by the new rod, when placed in thermal contact with the two reservoirs in time $t$ ?
In a steady state, the temperature at the end $A$ and $B$ of $20\,cm$ long rod $AB$ are $100\,^oC$ and $0\,^oC$ respectively. The temperature of a point $9\,cm$ from $A$ is....... $^oC$