The temperatures of two bodies measured by a thermometer are $t_{1}=20^{\circ} C \pm 0.5^{\circ} C$ and $t_{2}=50^{\circ} C \pm 0.5^{\circ} C$ Calculate the temperature difference and the error theirin.
$70^{\circ} C \pm 1^{\circ} C$
$30^{\circ} C \pm 0^{\circ} C$
$30^{\circ} C \pm 0.5^{\circ} C$
$30^{\circ} C \pm 1^{\circ} C$
The density of a material in the shape of a cube is determined by measuring three sides of the cube and its mass. If the relative errors in measuring the mass and length are respectively $1.5\%$ and $1\%$, the maximum error in determining the density is ........ $\%$
The relative error in the measurement of the side of a cube is $0.027$. The relative error in the measurement of its volume is ..........
Error in the measurement of radius of a sphere is $0.2\%$. The error in the calculated value of its volume is ......... $\%$
The resistance $R =\frac{V}{I}$ where $V= 100 \pm 5 \,volts$ and $ I = 10 \pm 0.2$ amperes. What is the total error in $R$ ......... $\%$
If the measurement errors in all the independent quantities are known, then it is possible to determine the error in any dependent quantity. This is done by the use of series expansion and truncating the expansion at the first power of the error. For example, consider the relation $z=x / y$. If the errors in $x, y$ and $z$ are $\Delta x, \Delta y$ and $\Delta z$, respectively, then
$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$
The series expansion for $\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$, to first power in $\Delta y / y$, is $1 \mp(\Delta y / y)$. The relative errors in independent variables are always added. So the error in $z$ will be $\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right)$.
The above derivation makes the assumption that $\Delta x / x \ll<1, \Delta y / y \ll<1$. Therefore, the higher powers of these quantities are neglected.
($1$) Consider the ratio $r =\frac{(1- a )}{(1+ a )}$ to be determined by measuring a dimensionless quantity a.
If the error in the measurement of $a$ is $\Delta a (\Delta a / a \ll<1)$, then what is the error $\Delta r$ in
$(A)$ $\frac{\Delta a }{(1+ a )^2}$ $(B)$ $\frac{2 \Delta a }{(1+ a )^2}$ $(C)$ $\frac{2 \Delta a}{\left(1-a^2\right)}$ $(D)$ $\frac{2 a \Delta a}{\left(1-a^2\right)}$
($2$) In an experiment the initial number of radioactive nuclei is $3000$ . It is found that $1000 \pm$ 40 nuclei decayed in the first $1.0 s$. For $|x|<1$, In $(1+x)=x$ up to first power in $x$. The error $\Delta \lambda$, in the determination of the decay constant $\lambda$, in $s ^{-1}$, is
$(A) 0.04$ $(B) 0.03$ $(C) 0.02$ $(D) 0.01$
Give the answer or quetion ($1$) and ($2$)