The term independent of $y$ in the expansion of ${({y^{ - 1/6}} - {y^{1/3}})^9}$ is
$84$
$8.4$
$0.84$
$-84$
If $^n{C_{r - 2}} = 36$ , $^n{C_{r - 1}} = 84$ and $^n{C_r} = 126$ , then value of $^n{C_{2r}}$ is
If the coefficients of $x^4, x^5$ and $x^6$ in the expansion of $(1+x)^n$ are in the arithmetic progression, then the maximum value of $n$ is :
The coefficient of the term independent of $x$ in the expansion of $(1 + x + 2x^3)$ ${\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ is
If $\frac{{{T_2}}}{{{T_3}}}$ in the expansion of ${(a + b)^n}$ and $\frac{{{T_3}}}{{{T_4}}}$ in the expansion of ${(a + b)^{n + 3}}$ are equal, then $n=$
The sum of the rational terms in the binomial expansion of ${\left( {{2^{\frac{1}{2}}} + {3^{\frac{1}{5}}}} \right)^{10}}$ is