ऐसे सभी भिन्न (distinct) $x \in R$, जिनके लिए $\left|\begin{array}{ccc}x & x^2 & 1+x^3 \\ 2 x & 4 x^2 & 1+8 x^3 \\ 3 x & 9 x^2 & 1+27 x^3\end{array}\right|$=$10$ है, की कुल संख्या है

  • [IIT 2016]
  • A

    $2$

  • B

    $3$

  • C

    $5$

  • D

    $4$

Similar Questions

सारणिकों के गुणधर्मो का प्रयोग करके निम्नलिखित प्रश्न को सिद्ध कीजिए :

$\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|=1$

$\left| {\,\begin{array}{*{20}{c}}{{a^2} + {x^2}}&{ab}&{ca}\\{ab}&{{b^2} + {x^2}}&{bc}\\{ca}&{bc}&{{c^2} + {x^2}}\end{array}\,} \right|$ का भाजक है  

यदि $a + x = b + y = c + z +1$ है, जहाँ $a , b , c , x$, $y , z$ शून्येत्तर भिन्न वास्तविक संख्याएँ हैं , तो $\left|\begin{array}{lll} x & a + y & x + a \\ y & b + y & y + b \\ z & c + y & z + c \end{array}\right|$ बराबर है 

  • [JEE MAIN 2020]

$\left| {\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\sin }^2}\theta }&{{{\sin }^2}\theta }\\{{{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{{{\cos }^2}\theta }\\{4\sin 4\theta }&{4\sin 4\theta }&{1 + 4\sin 4\theta }\end{array}} \right| = 0$ तो $\sin \,4\theta $ का मान है

बिना प्रसरण किए और सारणिकों के गुणधर्मो का प्रयोग करके सिद्ध कीजिए।

$\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$