- Home
- Standard 12
- Mathematics
आव्यूहों $A =\left(\begin{array}{ccc}0 & 2 y & 1 \\ 2 x & y & -1 \\ 2 x & - y & 1\end{array}\right),( x , y \in R , x \neq y )$ जिनके लिए $A ^{ T } A =3 I _{3}$ है, की कुल संख्या है
$6$
$2$
$3$
$4$
Solution
${A^T}A = 3{I_3}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
0&{2x}&{2x}\\
{2y}&y&{ – y}\\
1&{ – 1}&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0&{2y}&1\\
{2x}&y&{ – 1}\\
{2x}&{ – y}&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&0&0\\
0&3&0\\
0&0&3
\end{array}} \right]$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{8{x^2}}&0&0\\
0&{6{y^2}}&0\\
0&0&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
3&0&0\\
0&3&0\\
0&0&3
\end{array}} \right]$
$ \Rightarrow 8{x^2} = 3 \Rightarrow x = \pm \sqrt {\frac{3}{8}} $
$ \Rightarrow 6{y^2} = 3 \Rightarrow y = \pm \sqrt {\frac{1}{2}} $
$4$ matrices are possible