4-1.Complex numbers
hard

$\left(\frac{-1+i \sqrt{3}}{1-i}\right)^{30}$ का मान है 

A

$2^{15} i$

B

$-2^{15}$

C

$-2^{15} i$

D

$6^{5}$

(JEE MAIN-2020)

Solution

$\left(\frac{-1+i \sqrt{3}}{1-i}\right)^{30}=\left(\frac{2 \omega}{1-i}\right)^{30}$

$=\frac{2^{30} \cdot \omega^{30}}{\left((1- i )^{2}\right)^{30}}$

$=\frac{2^{30} \cdot 1}{\left(1+ i ^{2}-2 i \right)^{15}}$

$=\frac{2^{30}}{-2^{15} \cdot i ^{15}}$

$=-2^{15} i$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.