- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
$\left(\frac{-1+i \sqrt{3}}{1-i}\right)^{30}$ का मान है
A
$2^{15} i$
B
$-2^{15}$
C
$-2^{15} i$
D
$6^{5}$
(JEE MAIN-2020)
Solution
$\left(\frac{-1+i \sqrt{3}}{1-i}\right)^{30}=\left(\frac{2 \omega}{1-i}\right)^{30}$
$=\frac{2^{30} \cdot \omega^{30}}{\left((1- i )^{2}\right)^{30}}$
$=\frac{2^{30} \cdot 1}{\left(1+ i ^{2}-2 i \right)^{15}}$
$=\frac{2^{30}}{-2^{15} \cdot i ^{15}}$
$=-2^{15} i$
Standard 11
Mathematics