The value of $\overline {0.037} $ where,  $\overline {.037} $ stands for the number $0.037037037........$ is

  • A

    $\frac{{37}}{{1000}}$

  • B

    $\frac{1}{{27}}$

  • C

    $\frac{1}{{37}}$

  • D

    $\frac{{37}}{{999}}$

Similar Questions

If $a, b, c$ and $d$ are in $G.P.$ show that:

$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$

Evaluate $\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right)} $

Let $a_1, a_2, a_3, \ldots .$. be a sequence of positive integers in arithmetic progression with common difference $2$. Also, let $b_1, b_2, b_3, \ldots .$. be a sequence of positive integers in geometric progression with common ratio $2$ . If $a_1=b_1=c$, then the number of all possible values of $c$, for which the equality

$2\left(a_1+a_2+\ldots .+a_n\right)=b_1+b_2+\ldots . .+b_n$

holds for some positive integer $n$, is. . . . . . . 

  • [IIT 2020]

If $a,\,b,\,c$ are in $G.P.$, then

The sum of infinite terms of the geometric progression $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ is