The number which should be added to the numbers $2, 14, 62$ so that the resulting numbers may be in $G.P.$, is
$1$
$2$
$3$
$4$
If $p,\;q,\;r$ are in one geometric progression and $a,\;b,\;c$ in another geometric progression, then $cp,\;bq,\;ar$ are in
If the first term of a $G.P. a_1, a_2, a_3......$ is unity such that $4a_2 + 5a_3$ is least, then the common ratio of $G.P.$ is
Let $a$ and $b$ be roots of ${x^2} - 3x + p = 0$ and let $c$ and $d$ be the roots of ${x^2} - 12x + q = 0$, where $a,\;b,\;c,\;d$ form an increasing G.P. Then the ratio of $(q + p):(q - p)$ is equal to
Given $a_1,a_2,a_3.....$ form an increasing geometric progression with common ratio $r$ such that $log_8a_1 + log_8a_2 +.....+ log_8a_{12} = 2014,$ then the number of ordered pairs of integers $(a_1, r)$ is equal to
If the sum of the series $1 + \frac{2}{x} + \frac{4}{{{x^2}}} + \frac{8}{{{x^3}}} + ....\infty $ is a finite number, then