Gujarati
6.Permutation and Combination
hard

The value of $\sum\limits_{r = 0}^{n - 1} {\frac{{^n{C_r}}}{{^n{C_r} + {\,^n}{C_{r + 1}}}}} $ equals

A

$n + 1$

B

$\frac{n}{2}$

C

$n + 2$

D

None of these

Solution

(b)  $\sum\limits_{r = 0}^{n – 1} {\frac{{^n{C_r}}}{{^n{C_r} + {\,^n}{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n – 1} {\frac{1}{{1 + \,\frac{{^n{C_{r + 1}}}}{{^n{C_r}}}}}} = \sum\limits_{r = 0}^{n – 1} {\frac{1}{{1 + \frac{{n – r}}{{r + 1}}}}} $

$ = \sum\limits_{r = 0}^{n – 1} {\frac{{r + 1}}{{n + 1}}} = \frac{1}{{n + 1}}\sum\limits_{r = 0}^{n – 1} {(r + 1)} $ $ = \frac{1}{{(n + 1)}}[1 + 2 + … + n] = \frac{n}{2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.