- Home
- Standard 11
- Mathematics
6.Permutation and Combination
hard
The value of $\sum\limits_{r = 0}^{n - 1} {\frac{{^n{C_r}}}{{^n{C_r} + {\,^n}{C_{r + 1}}}}} $ equals
A
$n + 1$
B
$\frac{n}{2}$
C
$n + 2$
D
None of these
Solution
(b) $\sum\limits_{r = 0}^{n – 1} {\frac{{^n{C_r}}}{{^n{C_r} + {\,^n}{C_{r + 1}}}}} = \sum\limits_{r = 0}^{n – 1} {\frac{1}{{1 + \,\frac{{^n{C_{r + 1}}}}{{^n{C_r}}}}}} = \sum\limits_{r = 0}^{n – 1} {\frac{1}{{1 + \frac{{n – r}}{{r + 1}}}}} $
$ = \sum\limits_{r = 0}^{n – 1} {\frac{{r + 1}}{{n + 1}}} = \frac{1}{{n + 1}}\sum\limits_{r = 0}^{n – 1} {(r + 1)} $ $ = \frac{1}{{(n + 1)}}[1 + 2 + … + n] = \frac{n}{2}$.
Standard 11
Mathematics