Gujarati
6.Permutation and Combination
hard

$\sum\limits_{r = 0}^{n - 1} {\frac{{^n{C_r}}}{{^n{C_r} + {\,^n}{C_{r + 1}}}}} $ का मान है

A

$n + 1$

B

$\frac{n}{2}$

C

$n + 2$

D

इनमें से कोई नहीं

Solution

$\sum\limits_{r = 0}^{n – 1} {\frac{{^n{C_r}}}{{^n{C_r} + {\,^n}{C_{r + 1}}}}}  = \sum\limits_{r = 0}^{n – 1} {\frac{1}{{1 + \,\frac{{^n{C_{r + 1}}}}{{^n{C_r}}}}}}  = \sum\limits_{r = 0}^{n – 1} {\frac{1}{{1 + \frac{{n – r}}{{r + 1}}}}} $

$ = \sum\limits_{r = 0}^{n – 1} {\frac{{r + 1}}{{n + 1}}}  = \frac{1}{{n + 1}}\sum\limits_{r = 0}^{n – 1} {(r + 1)} $$ = \frac{1}{{(n + 1)}}[1 + 2 + … + n] = \frac{n}{2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.