$\lambda $ ની . . . . કિમત માટે સમીકરણની સંહતિ $2x - y - z = 12,$ $x - 2y + z = - 4,$ $x + y + \lambda z = 4$ ને એકપણ ઉકેલ શકય નથી.
$3$
$-3$
$2$
$-2$
જો $\omega $ એ એકનું કાલ્પનિક બીજ હોય , તો $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ - {\omega ^2}/2}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $
જો $A = \left[ {\begin{array}{*{20}{c}}5&{5\alpha }&\alpha \\0&\alpha &{5\alpha }\\0&0&5\end{array}} \right]$, જો ${\left| A \right|^2} = 25$, તો $\left| \alpha \right|$ મેળવો. . .
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right| = $
$a$ ની . . . કિમત માટે સમીકરણની સંહતિ ${a^3}x + {(a + 1)^3}y + {(a + 2)^3}z = 0,$ $ax + (a + 1)y + (a + 2)z = 0,$ $x + y + z = 0,$ નો ઉકેલ ખાલીગણ મળે.
$(\alpha , \beta )$ ની કેટલી જોડ માટે સુરેખ સમીકરણો $\left( {1 + \alpha } \right)x + \beta y + z = 2$ ; $\alpha x + \left( {1 + \beta } \right)y + z = 3$ ; $\alpha x + \beta y + 2z = 2$ એ એકાકી ઉકેલ ધરાવે છે .