$\left| {\,\begin{array}{*{20}{c}}1&{\cos (\beta - \alpha )}&{\cos (\gamma - \alpha )}\\{\cos (\alpha - \beta )}&1&{\cos (\gamma - \beta )}\\{\cos (\alpha - \gamma )}&{\cos (\beta - \gamma )}&1\end{array}} \right|$ = . . .

  • A

    ${\left| {\,\begin{array}{*{20}{c}}{\cos \alpha }&{\sin \alpha }&1\\{\cos \beta }&{\sin \beta }&1\\{\cos \gamma }&{\sin \gamma }&1\end{array}\,} \right|^2}$

  • B

    ${\left| {\,\begin{array}{*{20}{c}}{\sin \alpha }&{\cos \alpha }&0\\{\sin \beta }&{\cos \beta }&0\\{\sin \gamma }&{\cos \gamma }&0\end{array}\,} \right|^2}$

  • C

    ${\left| {\,\begin{array}{*{20}{c}}{\cos \alpha }&{\sin \alpha }&0\\{\sin \beta }&0&{\cos \beta }\\0&{\cos \gamma }&{\sin \gamma }\end{array}\,} \right|^2}$

  • D

    એકપણ નહી.

Similar Questions

 $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ અંતરાલમાં $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ ના વાસ્તવિક ભિન્ન બીજની સંખ્યા મેળવો.

  • [JEE MAIN 2021]

જો ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
  x&{\sin \,\theta }&{\cos \,\theta } \\ 
  {\sin \,\theta }&{ - x}&1 \\ 
  {\cos \,\theta }&1&x 
\end{array}} \right|$ અને ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
  x&{\sin \,2\theta }&{\cos \,\,2\theta } \\ 
  {\sin \,2\theta }&{ - x}&1 \\ 
  {\cos \,\,2\theta }&1&x 
\end{array}} \right|$, $x \ne 0$ ;તો દરેક $\theta  \in \left( {0,\frac{\pi }{2}} \right)$ માટે . . .  . 

  • [JEE MAIN 2019]

જો  $x, y, z$ એ સમાંતર શ્રેણીમાં છે કે જેનો સામાન્ય તફાવત $d , x \neq 3 d ,$ આપેલ છે અને શ્રેણિક $\left[\begin{array}{ccc}3 & 4 \sqrt{2} & x \\ 4 & 5 \sqrt{2} & y \\ 5 & k & z\end{array}\right]$ નું મૂલ્ય શૂન્ય છે તો  $k ^{2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $D = \left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right|$ જયાં $x \ne 0,y \ne 0$ તો $D$ એ . . . . .

  • [AIEEE 2007]

ધારો ક $A.P$. (સમાંતર શ્રેણી) ના ત્રણ ભિત્ર  ક્રમિક પદો $a, b, c$ માટે રેખાઓ$a x+b y+c=0$ બિંદુ $\mathrm{P}$ પર સંગામી થાય છે તથા $\mathrm{Q}(\alpha, \beta)$ એવું બિંદુ છે કે જેથી સમીકરણ સંહતિ  $x+y+z=6 \text {, }$  ,  $2 x+5 y+\alpha z=\beta $ અને  $x+2 y+3 z=4 $ ને અનંત ઉકેલો મળે. તો $(\mathrm{PQ})^2=. . . .  .  $

  • [JEE MAIN 2024]