$\lambda$ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણ સંહતિઓ $2 x-3 y+5 z=9$ ; $x+3 y-z=-18$ ; $3 x-y+\left(\lambda^{2}-1 \lambda \mid\right) z=16$ નો ઉકેલ ખાલીગણ થાય.
$0$
$1$
$2$
$4$
જો $D = \left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right|$ જયાં $x \ne 0,y \ne 0$ તો $D$ એ . . . . .
જો $a,b,c$ અને $d$ એ સંકર સંખ્યા હોય , તો નિશ્રાયક $\Delta = \left| {\,\begin{array}{*{20}{c}}2&{a + b + c + d}&{ab + cd}\\{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)}\\{ab + cd}&{ab(c + d) + cd(a + d)}&{2abcd}\end{array}} \right|$ એ. . . .. પર આધારિત છે.
જો સમીકરણો $x +y + z = 6$ ; $x + 2y + 3z= 10$ ; $x + 2y + \lambda z = 0$ એ એકાકી ઉકેલ ધરાવે છે તો $\lambda $ ની કિમંત . . . શક્ય નથી.
જો $a, b, c > 0$ અને $\Delta = \left| \begin{gathered}
a + b\,\,b\,\,c \hfill \\
b\, + \,c\,\,c\,\,\,a \hfill \\
c + a\,\,a\,\,b \hfill \\
\end{gathered} \right| ,$ હોય તો આપલે પૈકી ક્યૂ વિધાન અસત્ય થાય.
$\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right| = . . . $