समीकरण $\left| {\,\begin{array}{*{20}{c}}{x + \alpha }&\beta &\gamma \\\gamma &{x + \beta }&\alpha \\\alpha &\beta &{x + \gamma }\end{array}\,} \right| = 0$ से प्राप्त $x$ के मान होंगे 

  • A

    $0  $ और $ - (\alpha  + \beta  + \gamma )$

  • B

    $0  $ और $(\alpha  + \beta  + \gamma )$

  • C

    $1$  और $(\alpha  - \beta  - \gamma )$

  • D

    $0 $ और $({\alpha ^2} + {\beta ^2} + {\gamma ^2})$

Similar Questions

यदि $a, b, c$ धनात्मक और भिन्न हैं तो दिखाइए कि सारणिक

$\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ का मान ऋणात्मक है।

यदि $x$ एक धनात्मक पूर्णांक हो, तो $\Delta  = \left| {\,\begin{array}{*{20}{c}}{x!}&{(x + 1)!}&{(x + 2)!}\\{(x + 1)!}&{(x + 2)!}&{(x + 3)!}\\{(x + 2)!}&{(x + 3)!}&{(x + 4)!}\end{array}\,} \right|$ का मान है

समीकरण $\left|\begin{array}{lll}\cos x & \sin x & \sin x \\ \sin x & \cos x & \sin x \\ \sin x & \sin x & \cos x\end{array}\right|=0$, के अंतराल $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ में भिन्न वास्तविक मूलों की संख्या है

  • [JEE MAIN 2016]

यदि ${a^2} + {b^2} + {c^2} = - 2$ तथा $f(x) = \left| {\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}} \right|$ तो बहुपद $f(x)$ की घात होगी

  • [AIEEE 2005]

यदि $ab + bc + ca = 0$ और $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$, तो $x$ का एक मान होगा