The value of $x$ obtained from the equation $\left| {\,\begin{array}{*{20}{c}}{x + \alpha }&\beta &\gamma \\\gamma &{x + \beta }&\alpha \\\alpha &\beta &{x + \gamma }\end{array}\,} \right| = 0$ will be
$0 $ and $ - (\alpha + \beta + \gamma )$
$0$ and $(\alpha + \beta + \gamma )$
$1$ and $(\alpha - \beta - \gamma )$
$0 $ and $({\alpha ^2} + {\beta ^2} + {\gamma ^2})$
Using properties of determinants, prove that:
$\left|\begin{array}{ccc}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta\end{array}\right|=(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha+\beta+\gamma)$
Let the numbers $2, b, c$ be in an $A.P$ and $A = \left[ {\begin{array}{*{20}{c}}
1&1&1 \\
2&b&c \\
4&{{b^2}}&{{c^2}}
\end{array}} \right]$. If $det(A) \in [2,16]$ then $c$ lies in the interval
Evaluate $\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$
If $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{{{(a + \lambda )}^2}}&{{{(b + \lambda )}^2}}&{{{(c + \lambda )}^2}} \\
{{{(a - \lambda )}^2}}&{{{(b - \lambda )}^2}}&{{{(c - \lambda )}^2}}
\end{array}} \right|$ $ = \,k\lambda \,\,\left| {{\mkern 1mu} {\mkern 1mu} \begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
a&b&c \\
1&1&1
\end{array}} \right|,\lambda \, \ne \,0$ then $k$ is equal to
Evaluate $\left|\begin{array}{ccc}x & y & x+y \\ y & x+y & x \\ x+y & x & y\end{array}\right|$