The value of ${\sum\limits_{r = 1}^{19} {\frac{{{}^{20}{C_{r + 1}}\left( { - 1} \right)}}{{{2^{2r + 1}}}}} ^r}$ is
$2\left( {{{\left( {\frac{3}{4}} \right)}^{20}} + 4} \right)$
$-2\left( {{{\left( {\frac{3}{4}} \right)}^{20}} + 4} \right)$
$2\left( {{{\left( {\frac{3}{4}} \right)}^{20}} - 4} \right)$
$-2\left( {{{\left( {\frac{3}{4}} \right)}^{20}} - 4} \right)$
The coefficient of $x^8$ in the expansion of $(x-1) (x- 2) (x-3)...............(x-10)$ is :
If ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ then ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $
$(2n + 1) (2n + 3) (2n + 5) ....... (4n - 1)$ is equal to :
In the expansion of ${(x + a)^n}$, the sum of odd terms is $P$ and sum of even terms is $Q$, then the value of $({P^2} - {Q^2})$ will be
The coefficient of $x^{91}$ in the series $^{100}{C_1}\,{2^8}.\,{\left( {1\, - \,x} \right)^{99}}\, + {\,^{100}}{C_2}\,{2^7}.\,{\left( {1\, - \,x} \right)^{98}}\, + {\,^{100}}{C_3}\,{2^6}.\,{\left( {1\, - \,x} \right)^{97}}\, + \,....\, + {\,^{100}}{C_9}\,{\left( {1\, - \,x} \right)^{91}}$ is equal to -