If $C_r= ^{100}{C_r}$ , then $1.C^2_0 - 2.C^2_1 + 3.C^2_3 - 4.C^2_0 + 5.C^2_4 - .... + 101.C^2_{100}$ is equal to
${100.^{100}}{C_{50}}\,\,\,$
${51.^{100}}{C_{50}}\,\,\,$
${100.^{200}}{C_{100}}\,\,\,$
${51.^{200}}{C_{100}}\,\,\,$
If $A$ denotes the sum of all the coefficients in the expansion of $\left(1-3 x+10 x^2\right)^n$ and $B$ denotes the sum of all the coefficients in the expansion of $\left(1+x^2\right)^n$, then :
Coefficient of $x^{n-6}$ in the expansion $n\left[ {x - \left( {\frac{{^n{C_0}{ + ^n}{C_1}}}{{^n{C_0}}}} \right)} \right]\left[ {\frac{x}{2} - \left( {\frac{{^n{C_1}{ + ^n}{C_2}}}{{^n{C_1}}}} \right)} \right]\left[ {\frac{x}{3} - \left( {\frac{{^n{C_2}{ + ^n}{C_3}}}{{^n{C_2}}}} \right)} \right].....$ $ \left[ {\frac{x}{n} - \left( {\frac{{^n{C_{n - 1}}{ + ^n}{C_n}}}{{^n{C_{n - 1}}}}} \right)} \right]$ is equal to (where $n = n . (n -1) . (n -2).... 3.2.1$ )
The value of $\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ is
Sum of odd terms is $A$ and sum of even terms is $B$ in the expansion ${(x + a)^n},$ then
Let $[ x ]$ denote greatest integer less than or equal to $x .$ If for $n \in N ,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, then $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ is equal to