The coefficient of $x^{256}$ in the expansion of $(1-x)^{101}\left(x^{2}+x+1\right)^{100}$ is:
${-}^{100} \mathrm{C}_{16}$
$^{100} \mathrm{C}_{16}$
$^{100} \mathrm{C}_{15}$
$-{ }^{100} \mathrm{C}_{15}$
If ${C_0},{C_1},{C_2},.......,{C_n}$ are the binomial coefficients, then $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + ....$ equals
If $\frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots . .+\frac{{ }^{11} C_9}{10}=\frac{n}{m}$ with $\operatorname{gcd}(n, m)=1$, then $n+m$ is equal to
The sum of last eigth coefficients in the expansion of $(1 + x)^{15}$ is :-
If the sum of the coefficients of all even powers of $x$ in the product $\left(1+x+x^{2}+\ldots+x^{2 n}\right)\left(1-x+x^{2}-x^{3}+\ldots+x^{2 n}\right)$ is $61,$ then $\mathrm{n}$ is equal to
If $f(y) = 1 - (y - 1) + {(y - 1)^2} - {(y - 1)^{^3}} + ... - {(y - 1)^{17}},$ then the coefficient of $y^2$ in it is