$\left[ {\frac{{\log \left( {\frac{x}{e}} \right)}}{{x - \,e}}} \right]\,\forall x\, > \,e$ ની કિમંત મેળવો . (કે જ્યાં [.] એ મહતમ પૃણાંક વિધેય છે.)
$1$
$0$
$2$
એકજ કિમંત ધરાવી શકે નહીં.
જો $g(x) = 2f (2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3)$, $\forall x \in R$ અને $f"(x) > 0, \forall x \in R$ તો $g'(x) > 0$ થાય તે માટે $x \,\in$
આપેલ પૈકી ક્યૂ વિધેય રોલના પ્રમેયનું પાલન કરે છે ?
$a = 1$ અને $b = 3$ લઈ વિધેય $f(x)=x^{3}-5 x^{2}-3 x$ માટે $[a, b]$ પર મધ્યકમાન પ્રમેય ચકાસો. $f^{\prime}(c)=0$ થાય તેવા તમામ $c \in(1,3)$ શોધો.
જો $a + b + c = 0 $ હોય, તો સમીકરણ $3ax^2 + 2bx + c = 0$ ના કેટલા બીજ હોય ?
ધારો કે $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ અચળ ન હોય તેવો દ્રિવિકલનીય વિધેય છે જ્યાં $\mathrm{g}\left(\frac{1}{2}\right)=\mathrm{g}\left(\frac{3}{2}\right)$. જો વાસ્તવિક મૂલ્યવાળું વિધેય $F$ એ $f(x)=\frac{1}{2}[g(x)+\mathrm{g}(2-x)]$ ] પ્રમાણે વ્યાખ્યાયિત થાય, તો: