ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[-2,2]$
By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if
a) $f$ is continuous on $[a, b]$
b) $f$ is continuous on $(a, b)$
c) $f(a)=f(b)$
Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$
Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.
$f(x)=[x]$ for $x \in[-2,2]$
It is evident that the given function $f(x)$ is not continuous at every integral point.
In particular, $f(x)$ is not continuous at $x=-2$ and $x=2$
$\Rightarrow f=(x)$ is not continuous in $[-2,2]$
Also, $f(-2)=[2]=-2$ and $f(2)=[2]=2$
$\therefore f(-2) \neq f(2)$
The differentiability of in $(-2,2)$ is checked as follows.
Let $\mathrm{n}$ be an integer such that $n \in(-2,2)$
The left hand limit of $f$ at $x=\mathrm{n}$ is,
$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n - 1 - n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{ - 1}}{h} = \infty $
The right hand limit of $f$ at $x=n$ is,
$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n - n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} 0 = 0$
Since the left and right hand limits of $f$ at $x=n$ are not equal, $f$ is not differentiable at $x=n$
$\therefore f$ is not continuous in $(-2,2).$
It is observed that $f$ does not satisfy all the conditions of the hypothesis of Rolle's Theorem.
Hence, Roller's Theorem is not applicable for $f(x)=[x]$ for $x \in[-2,2]$
કઈ વાસ્તવિક સંખ્યા $K$ માટે સમીકરણ $2x^3 + 3x + k = 0$ ના બે વાસ્તવિક બીજ $ [0, 1]$ અંતરાલમાં હોય ?
ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=x^{2}-1,$ $x \in[1,2]$
વિધેયો $f(x)$ અને $g(x)$ છે કે જેથી $f(x) + \int\limits_0^x {g(t)dt = 2\,\sin \,x\, - \,\frac{\pi }{2}} $ અને $f'(x).g (x) = cos^2\,x$ હોય તો અંતરાલ $(0,3 \pi$) પર સમીકરણ $f(x) + g(x) = 0$ ના ઉકેલની સંખ્યા મેળવો.
$\left[ {\frac{{\log \left( {\frac{x}{e}} \right)}}{{x - \,e}}} \right]\,\forall x\, > \,e$ ની કિમંત મેળવો . (કે જ્યાં [.] એ મહતમ પૃણાંક વિધેય છે.)
જો $y = f (x)$ અને $y = g (x)$ એ $[0,2]$ પર બે વિકલનીય વિધેય છે કે જેથી $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ અને $g(2) = 2$ થાય. જો ઓછામાં ઓછો એક $c \in \left( {0,2} \right)$ મળે કે જેથી $f'(c)=kg'(c)$ થાય તો $k$ મેળવો.