The value of m for which $y = mx + 6$ is a tangent to the hyperbola $\frac{{{x^2}}}{{100}} - \frac{{{y^2}}}{{49}} = 1$, is
$\sqrt {\frac{{17}}{{20}}} $
$\sqrt {\frac{{20}}{{17}}} $
$\sqrt {\frac{3}{{20}}} $
$\sqrt {\frac{{20}}{3}} $
The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $\mathrm{x}= \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y-\sqrt{3} \mathrm{x}+\sqrt{3}=0$ touch this hyperbola at $\left(\mathrm{x}_0, \mathrm{y}_0\right)$. If $\mathrm{m}$ is the product of the focal distances of the point $\left(\mathrm{x}_0, \mathrm{y}_0\right)$, then $4 \mathrm{e}^2+\mathrm{m}$ is equal to ...........
Let the eccentricity of the hyperbola $H : \frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$ be $\sqrt{\frac{5}{2}}$ and length of its latus rectum be $6 \sqrt{2}$, If $y =2 x + c$ is a tangent to the hyperbola $H$, then the value of $c ^{2}$ is equal to
The circle $x^2+y^2-8 x=0$ and hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$ intersect at the points $A$ and $B$
$2.$ Equation of a common tangent with positive slope to the circle as well as to the hyperbola is
$(A)$ $2 x-\sqrt{5} y-20=0$ $(B)$ $2 x-\sqrt{5} y+4=0$
$(C)$ $3 x-4 y+8=0$ $(D)$ $4 x-3 y+4=0$
$2.$ Equation of the circle with $\mathrm{AB}$ as its diameter is
$(A)$ $x^2+y^2-12 x+24=0$ $(B)$ $x^2+y^2+12 x+24=0$
$(C)$ $\mathrm{x}^2+\mathrm{y}^2+24 \mathrm{x}-12=0$ $(D)$ $x^2+y^2-24 x-12=0$
Give hte answer question $1, 2$
If a hyperbola passes through the point $\mathrm{P}(10,16)$ and it has vertices at $(\pm 6,0),$ then the equation of the normal to it at $P$ is
Tangents are drawn from any point on hyperbola $4x^2 -9y^2 = 36$ to the circle $x^2 + y^2 = 9$ . If locus of midpoint of chord of contact is $\left( {\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4}} \right) = \lambda {\left( {\frac{{{x^2} + {y^2}}}{9}} \right)^2}$ , then $\lambda $ is