- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
easy
The value of m for which $y = mx + 6$ is a tangent to the hyperbola $\frac{{{x^2}}}{{100}} - \frac{{{y^2}}}{{49}} = 1$, is
A
$\sqrt {\frac{{17}}{{20}}} $
B
$\sqrt {\frac{{20}}{{17}}} $
C
$\sqrt {\frac{3}{{20}}} $
D
$\sqrt {\frac{{20}}{3}} $
Solution
(a) If $y = mx + c$ touches $\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1,$
then ${c^2} = {a^2}{m^2} – {b^2}$.
Here $c = 6,\,\,{a^2} = 100,\,\,{b^2} = 49$
$\therefore 36 = 100{m^2} – 49$
$\Rightarrow 100{m^2} = 85 $
$\Rightarrow m = \sqrt {\frac{{17}}{{20}}} $.
Standard 11
Mathematics