- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
If a circle cuts a rectangular hyperbola $xy = {c^2}$ in $A, B, C, D$ and the parameters of these four points be ${t_1},\;{t_2},\;{t_3}$ and ${t_4}$ respectively. Then
A
${t_1}{t_2} = {t_3}{t_4}$
B
${t_1}{t_2}{t_3}{t_4} = 1$
C
${t_1} = {t_2}$
D
${t_3} = {t_4}$
Solution
(b) Let equation of circle is ${x^2} + {y^2} = {a^2}$
Parametric form of $xy = {c^2}$ are $x = ct,\,\,\,y = \frac{c}{t}$
==> ${c^2}{t^2} + \frac{{{c^2}}}{{{t^2}}} = {a^2}$
==> ${c^2}{t^4} – {a^2}{t^2} + {c^2} = 0$
Product of roots will be, ${t_1}{t_2}{t_3}{t_4} = \frac{{{c^2}}}{{{c^2}}} = 1$.
Standard 11
Mathematics