3 and 4 .Determinants and Matrices
easy

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&1&1\\{b + c}&{c + a}&{a + b}\\{b + c - a}&{c + a - b}&{a + b - c}\end{array}\,} \right|$ is

A

$abc$

B

$a + b + c$

C

$ab + bc + ca$

D

$0$

Solution

(d) $\left| {\,\begin{array}{*{20}{c}}1&1&1\\{b + c}&{c + a}&{a + b}\\{b + c – a}&{c + a – b}&{a + b – c}\end{array}\,} \right|$

= $\left| {\,\begin{array}{*{20}{c}}0&0&1\\{b – a}&{c – b}&{a + b}\\{2\,(b – a)}&{2\,(c – b)}&{a + b – c}\end{array}\,} \right|\, = 0$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.