- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
The value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&1&1\\{b + c}&{c + a}&{a + b}\\{b + c - a}&{c + a - b}&{a + b - c}\end{array}\,} \right|$ is
A
$abc$
B
$a + b + c$
C
$ab + bc + ca$
D
$0$
Solution
(d) $\left| {\,\begin{array}{*{20}{c}}1&1&1\\{b + c}&{c + a}&{a + b}\\{b + c – a}&{c + a – b}&{a + b – c}\end{array}\,} \right|$
= $\left| {\,\begin{array}{*{20}{c}}0&0&1\\{b – a}&{c – b}&{a + b}\\{2\,(b – a)}&{2\,(c – b)}&{a + b – c}\end{array}\,} \right|\, = 0$.
Standard 12
Mathematics