- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
$\left| {\,\begin{array}{*{20}{c}}0&{{b^3} - {a^3}}&{{c^3} - {a^3}}\\{{a^3} - {b^3}}&0&{{c^3} - {b^3}}\\{{a^3} - {c^3}}&{{b^3} - {c^3}}&0\end{array}\,} \right| = . . $
A
${a^3} + {b^3} + {c^3}$
B
${a^3} - {b^3} - {c^3}$
C
$0$
D
$ - {a^3} + {b^3} + {c^3}$
Solution
(c) $\left| {\,\begin{array}{*{20}{c}}0&{{b^3} – {a^3}}&{{c^3} – {a^3}}\\{{a^3} – {b^3}}&0&{{c^3} – {b^3}}\\{{a^3} – {c^3}}&{{b^3} – {c^3}}&0\end{array}\,} \right|$
$({b^3} – {a^3})({c^3} – {a^3})\left| {\,\begin{array}{*{20}{c}}0&1&1\\{{a^3} – {b^3}}&1&1\\{{a^3} – {c^3}}&1&1\end{array}\,} \right| = 0$
$[{C_2} \to {C_2} – {C_1}$ and ${C_3} \to {C_3} – {C_1}]$ and then taking out common
$({b^2} – {a^3})$ from $II^{nd}$ column and ( ${c^3} – {a^3}$) from $III^{rd}$ column].
Standard 12
Mathematics