નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી સાબિત કરો કે, $\left|\begin{array}{lll}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x),$ $p$ અચળ છે.
$\Delta=\left|\begin{array}{lll}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1},$ we have:
$\Delta=\left|\begin{array}{ccc}x & x^{2} & 1+p x^{3} \\ y-x & y^{2}-x^{2} & p\left(y^{3}-x^{3}\right) \\ z-x & z^{2}-x^{2} & p\left(z^{3}-x^{3}\right)\end{array}\right|$
$=(y-x)(z-x)\left|\begin{array}{ccc}
x & x^{2} & 1+p x^{3} \\
1 & y+x & p\left(y^{2}+x^{2}+x y\right) \\
1 & z+x & p\left(z^{2}+x^{2}+x z\right)
\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}-R_{2},$ we have:
${\Delta = (y - x)(z - x)\left| {\begin{array}{*{20}{c}}
x&{{x^2}}&{1 + p{x^3}} \\
1&{y + x}&{p\left( {{y^2} + {x^2} + xy} \right)} \\
0&{z - y}&{p(z - y)(x + y + z)}
\end{array}} \right|}$
${ = (y - x)(z - x)(z - y)\left| {\begin{array}{*{20}{c}}
x&{{x^2}}&{1 + p{x^3}} \\
1&{y + x}&{p\left( {{y^2} + {x^2} + xy} \right)} \\
0&1&{p(x + y + z)}
\end{array}} \right|}$
Expanding along $R_{3},$ we have:
$\Delta=(x-y)(y-z)(z-x)\left[(-1)(p)\left(x y^{2}+x^{3}+x^{2} y\right)\right.$ $\left. { + 1 + p{x^3} + p(x + y + z)(xy)} \right]$
$ = (x - y)(y - z)(z - x)$ $\left[ { - px{y^2} - p{x^3} - p{x^2}y} \right.\left. { + 1 + p{x^3} + p{x^2}y + px{y^2} + pxyz} \right]$
$ = (x - y)(y - z)(z - x)(1 + pxyz)$
Hence, the given result is proved.
જો $a,b,c$ એ અસમાન હોય તો $\Delta = \left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} + 1}\\b&{{b^2}}&{{b^3} + 1}\\c&{{c^2}}&{{c^3} + 1}\end{array}\,} \right|= 0$ માટે . . . .શરતનું પાલન થવું જોઈએ.
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$
$\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$ માટે ગુણધર્મ $2$ ની ચકાસણી કરો.
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$