4-1.Complex numbers
medium

The value of the sum $\sum\limits_{n = 1}^{13} {({i^n} + {i^{n + 1}})} $, where $i = \sqrt { - 1} $, equals

A

$i$

B

$i - 1$

C

$ - i$

D

$0$

(IIT-1998)

Solution

(b) $\sum\limits_{n = 1}^{13} {({i^n} + {i^{n + 1}})} $$ = (i + {i^2} + {i^3} + …. + {i^{13}}) + ({i^2} + {i^3} + …. + {i^{14}})$
$ = \frac{{i(1 – {i^{13}})}}{{1 – i}} + \frac{{{i^2}(1 – {i^{13}})}}{{1 – i}}$$ = i\,\left( {\frac{{1 – i}}{{1 – i}}} \right) + \frac{{{i^2}(1 – i)}}{{(1 – i)}}$
$ = i + {i^2} = i – 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.