If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec  B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.

Column $-I$ Column $-II$
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ $(i)$ $\theta = \,{0^o}$
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ $(ii)$ $\theta = \,{90^o}$
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ $(iii)$ $\theta = \,{180^o}$
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ $(iv)$ $\theta = \,{60^o}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given $|\mathrm{A}|=2$ and $|\mathrm{B}|=4$

$(a)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=0$

$\therefore \quad 2 \times 4 \cos \theta=0$

$\therefore \quad \cos \theta=0=\cos 90^{\circ}$

$\therefore \quad \theta=90^{\circ}$

$\therefore$ Option $(a)$ matches with option $(ii)$.

$(b)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=8$

$\therefore 2 \times 4 \cos \theta=8$

$\therefore \quad \cos \theta=1=\cos 0^{\circ}$

$\therefore \quad \theta=0^{\circ}$

$\therefore$ Option $(b)$ matches with option $(i)$.

$(c)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=4$

$\therefore \quad 2 \times 4 \cos \theta=4$ $\therefore \quad \cos \theta=\frac{1}{2}=\cos 60^{\circ}$ $\therefore \quad \theta=60^{\circ}$

$\therefore$ Option $(c)$ matches with option $(iv)$.

$(d)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=-8$

$\therefore \quad 2 \times 4 \cos \theta=-8$

$\therefore \quad \cos \theta=-1=\cos 180^{\circ}$

$\therefore \quad \cos \theta=180^{\circ}$

Option $(d)$ matches with option $(iii)$.

Similar Questions

Let $\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$. The value of $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ is

  • [JEE MAIN 2019]

Explain the kinds of multiplication operations for vectors.

If $|\vec A \times \vec B| = \sqrt 3 \vec A.\vec B,$ then the value of$|\vec A + \vec B|$ is

  • [AIPMT 2004]

The values of $x$ and $y$ for which vectors $A =(6 \hat{ i }+x \hat{ j }-2 \hat{ k })$ and $B =(5 \hat{ i }+6 \hat{ j }-y \hat{ k })$ may be parallel are

If $\overrightarrow A \times \overrightarrow B = \overrightarrow C ,$then which of the following statements is wrong