If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ | $(i)$ $\theta = \,{0^o}$ |
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ | $(ii)$ $\theta = \,{90^o}$ |
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ | $(iii)$ $\theta = \,{180^o}$ |
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ | $(iv)$ $\theta = \,{60^o}$ |
Given $|\mathrm{A}|=2$ and $|\mathrm{B}|=4$
$(a)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=0$
$\therefore \quad 2 \times 4 \cos \theta=0$
$\therefore \quad \cos \theta=0=\cos 90^{\circ}$
$\therefore \quad \theta=90^{\circ}$
$\therefore$ Option $(a)$ matches with option $(ii)$.
$(b)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=8$
$\therefore 2 \times 4 \cos \theta=8$
$\therefore \quad \cos \theta=1=\cos 0^{\circ}$
$\therefore \quad \theta=0^{\circ}$
$\therefore$ Option $(b)$ matches with option $(i)$.
$(c)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=4$
$\therefore \quad 2 \times 4 \cos \theta=4$ $\therefore \quad \cos \theta=\frac{1}{2}=\cos 60^{\circ}$ $\therefore \quad \theta=60^{\circ}$
$\therefore$ Option $(c)$ matches with option $(iv)$.
$(d)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=-8$
$\therefore \quad 2 \times 4 \cos \theta=-8$
$\therefore \quad \cos \theta=-1=\cos 180^{\circ}$
$\therefore \quad \cos \theta=180^{\circ}$
Option $(d)$ matches with option $(iii)$.
Let $\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$. The value of $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ is
Explain the kinds of multiplication operations for vectors.
If $|\vec A \times \vec B| = \sqrt 3 \vec A.\vec B,$ then the value of$|\vec A + \vec B|$ is