The values of $\theta, \lambda$ for which the following equations $\sin \theta x - cos\theta y + (\lambda +1)z = 0$; $\cos\theta x + \sin\theta\, y - \lambda z = 0$;$ \lambda x +(\lambda + 1)y + \cos\theta z = 0$ have non trivial solution, is

  • A

    $\theta = n\pi , \lambda \in R - {0}$

  • B

    $\theta = 2n\pi , \lambda $ is any rational number

  • C

    $\theta = (2n + 1)\pi , \lambda   \in R+, n \in I$

  • D

    $\theta = (2n + 1),\frac{\pi }{2} \lambda \in R, n \in I$

Similar Questions

If the system of equations $\alpha x+y+z=5, x+2 y+$ $3 z=4, x+3 y+5 z=\beta$ has infinitely many solutions, then the ordered pair $(\alpha, \beta)$ is equal to:

  • [JEE MAIN 2022]

Consider the following system of questions $\alpha x+2 y+z=1$  ;  $2 \alpha x+3 y+z=1$  ;  $3 x+\alpha y+2 z=\beta$ . For some $\alpha, \beta \in R$. Then which of the following is NOT correct.

  • [JEE MAIN 2023]

Let $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in R$. If $x(\alpha, 1,2)+y(1, \beta, 2)$ $+z(2,3, \gamma)=(0,0,0)$ for some $x, y, z \in R, x y z \neq$ 0 , then $6 \alpha+4 \beta+\gamma$ is equal to..............

  • [JEE MAIN 2024]

$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $

The remainder when the determinant $\left|\begin{array}{lll} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \end{array}\right|$  is divided by $5$ is

  • [KVPY 2015]