$\alpha$, $\beta$ तथा $\gamma$ का प्रसरण $9$ है, तब $5$$\alpha$, $5$$\beta$, तथा $5$$\gamma$ का प्रसरण है
$45$
$\frac{9}{5}$
$\frac{5}{9}$
$225$
निम्नलिखित आँकड़ों के लिए प्रसरण तथा मानक विचलन ज्ञात कीजिए
$6,8,10,12,14,16,18,20,22,24$
निम्नलिखित बंटन के लिए माध्य, प्रसरण और मानक विचलन ज्ञात कीजिए
वर्ग | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
बारंबारता | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10$ तथा $2$ हैं। जाँच करने पर यह पाया गया कि प्रेक्षण $8$ गलत है। निम्न में से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए यदि
उसे $12$ से बदल दिया जाए।
माना $A$ में 5 अवयव है तथा समुच्चय $B$ में भी 5 अवयव हैं। माना समुच्चयों $A$ तथा $B$ के अवयवों के माध्य क्रमशः $5$ तथा $8$ है और समुच्चयों $A$ तथा $\mathrm{B}$ के अवयवों $12$ तथा $20$ है। $\mathrm{A}$ के प्रत्येक अवयव में से $3$ घटा कर तथा $B$ के प्रत्येक अवयव में $2$ जोड़ कर $10$ अवयवों का एक नया समुच्चय $\mathrm{C}$ बनाया जाता है। तो $\mathrm{C}$ के अवयवों के माध्य तथा प्रसरण का योग है :
$30$ आइटम (items) का परिणाम देखा गया, इनमें से $10$ आइटम में प्रत्येक के परिणाम $\frac{1}{2}- d$ दिया, $10$ आइटम में प्रत्येक ने परिणाम $\frac{1}{2}$ दिया तथा बाकि $10$ आइटम में प्रत्येक ने परिणाम $\frac{1}{2}+d$ दिया। यदि इन आँकड़ों का प्रसरण $\frac{4}{3}$ है, तो $| d |$ बराबर