सात प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ है। यदि इनमें से $5$ प्रेक्षण $2,4,10,12,14$ है, तो शेष दो प्रेक्षणों का गुणनफल है 

  • [JEE MAIN 2019]
  • A

    $40$

  • B

    $45$

  • C

    $49$

  • D

    $48$

Similar Questions

माना छः संख्याएं $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4, \mathrm{a}_5, \mathrm{a}_6$ समान्तर श्रेणी में है और $\mathrm{a}_1+\mathrm{a}_3=10$ है। यदि इन छ: संख्याओं का माध्य $\frac{19}{2}$ है और इनका प्रसरण $\sigma^2$ है, तब $8 \sigma^2$ का मान है :

  • [JEE MAIN 2023]

यदि पाँच प्रे क्षणों $x _{1}, x _{2}, x _{3}, x _{4}, x _{5}$ का माध्य तथा मानक विचलन क्रमशः $10$ तथा $3$ हो, तो छः प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{5}$ तथा $-50$ का प्रसरण होगा-

  • [JEE MAIN 2019]

यदि प्रथम $n$ प्राकृत संख्याओं का प्रसरण $10$ है और प्रथम $m$ सम-प्राकृत संख्याओं का प्रसरण $16$ है, तो $m + n$ बराबर है

  • [JEE MAIN 2020]

माना $2 n$ प्रेक्षणों की एक शंखला में, आधे $a$ के बराबर है तथा शेष आधे $- a$ के बराबर है। प्रत्येक प्रेक्षण में एक अचर $b$ जोड़ने पर नये समूह का माध्य तथा मानक विचलन क्रमशः $5$ तथा $20$ हैं। तो $a ^{2}+ b ^{2}$ का मान बराबर है

  • [JEE MAIN 2021]

$3 n$ संख्याओं का एक समुच्चय है, जिसका प्रसरण $4$ है। इस समुच्चय में, प्रथम $2 n$ संख्याओं का माध्य $6$ है तथा शेष $n$ संख्याओं का माध्य $3$ है। प्रथम $2 n$ संख्याओं में प्रत्येक में $1$ जोड़कर तथा शेष $n$ संख्याओं में प्रत्येक से $1$ घटा कर एक नया समुच्चय बनाया गया है। यदि नये समुच्चय का प्रसरण $k$ है, तो $9 k$ बराबर .............. है ।

  • [JEE MAIN 2021]