- Home
- Standard 11
- Physics
11.Thermodynamics
hard
The variation of pressure $P$ with volume $V$ for an ideal monatomic gas during an adiabatic process is shown in figure. At point $A$ the magnitude of rate of change of pressure with volume is

A
$\frac{3 P_0}{5 V_0}$
B
$\frac{5 P_0}{3 V_0}$
C
$\frac{3 P_0}{2 V_0}$
D
$\frac{5 P_0}{2 V_0}$
Solution

(d)
$P V^y=$ constant
$P \propto V^{-\gamma}$
$\frac{d P}{P}=-\gamma \frac{d V}{V}$
$\frac{d P}{d V}=\gamma \frac{P}{V}$
$=\frac{5}{3} \times \frac{3 P_0}{2 V_0}$
$=\frac{5 P_0}{2 V_0}$
Then $\left(\frac{d P}{d V}\right)=\frac{5 P_0}{2 V_0}$
Standard 11
Physics