11.Thermodynamics
hard

The variation of pressure $P$ with volume $V$ for an ideal monatomic gas during an adiabatic process is shown in figure. At point $A$ the magnitude of rate of change of pressure with volume is

A

$\frac{3 P_0}{5 V_0}$

B

$\frac{5 P_0}{3 V_0}$

C

$\frac{3 P_0}{2 V_0}$

D

$\frac{5 P_0}{2 V_0}$

Solution

(d)

$P V^y=$ constant

$P \propto V^{-\gamma}$

$\frac{d P}{P}=-\gamma \frac{d V}{V}$

$\frac{d P}{d V}=\gamma \frac{P}{V}$

$=\frac{5}{3} \times \frac{3 P_0}{2 V_0}$

$=\frac{5 P_0}{2 V_0}$

Then $\left(\frac{d P}{d V}\right)=\frac{5 P_0}{2 V_0}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.