The vector $\vec E$ and $\vec B$ of an electromagnetic wave in vacuum are
along the same direction but of phase by $90^o$
along the same direction and in phase
perpendicular to each other and in phase
perpendicular to each other and out of phase by $90^o$
The electric fields of two plane electromagnetic plane waves in vacuum are given by
$\overrightarrow{\mathrm{E}}_{1}=\mathrm{E}_{0} \hat{\mathrm{j}} \cos (\omega \mathrm{t}-\mathrm{kx})$ and
$\overrightarrow{\mathrm{E}}_{2}=\mathrm{E}_{0} \hat{\mathrm{k}} \cos (\omega \mathrm{t}-\mathrm{ky})$
At $t=0,$ a particle of charge $q$ is at origin with a velocity $\overrightarrow{\mathrm{v}}=0.8 \mathrm{c} \hat{\mathrm{j}}$ ($c$ is the speed of light in vacuum). The instantaneous force experienced by the particle is
The intensity of light from a source is $\left( {\frac{{500}}{\pi }} \right)W/{m^2}$ . Find the amplitude of electric field in this wave
An $EM$ wave propagating in $x$-direction has a wavelength of $8\,mm$. The electric field vibrating $y$ direction has maximum magnitude of $60\,Vm ^{-1}$. Choose the correct equations for electric and magnetic fields if the $EM$ wave is propagating in vacuum
About $5 \%$ of the power of a $100\; W$ light bulb is converted to visible radiation. What is the average intensity of visible radiation
$(a)$ at a distance of $1 \;m$ from the bulb?
$(b)$ at a distance of $10\; m ?$ Assume that the radiation is emitted isotropically and neglect reflection.
The ratio of amplitude of magnetic field to the amplitude of electric field for an electromagnetic wave propagating in vacuum is equal to