The electric field in an electromagnetic wave is given by ${E}=\left(50\, {NC}^{-1}\right) \sin \omega({t}-{x} / {c})$
The energy contained in a cylinder of volume ${V}$ is $5.5 \times 10^{-12} \, {J}$. The value of ${V}$ is $......{cm}^{3}$ $\left(\right.$ given $\left.\in_{0}=8.8 \times 10^{-12} \,{C}^{2} {N}^{-1} {m}^{-2}\right)$
$5000$
$1500$
$500$
$100$
A radio transmitter transmits at $830\, kHz$. At a certain distance from the transmitter magnetic field has amplitude $4.82\times10^{-11}\,T$. The electric field and the wavelength are respectively
The electric field part of an electromagnetic wave in a medium is represented by
$E_x=0, E_y=2.5 \frac{N}{C}\, cos\,\left[ {\left( {2\pi \;\times\;{{10}^6}\;\frac{{rad}}{s}\;\;} \right)t - \left( {\pi \;\times\;{{10}^{ - 2}}\;\frac{{rad}}{m}} \right)x} \right]$,and $ E_z=0$ . The wave is
The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is $B_0 = 510 \;nT$.What is the amplitude of the electric field (in $N/C$) part of the wave?
A mathematical representation of electromagnetic wave is given by the two equations $E = E_{max}\,\, cos (kx -\omega\,t)$ and $B = B_{max} cos\, (kx -\omega\,t),$ where $E_{max}$ is the amplitude of the electric field and $B_{max}$ is the amplitude of the magnetic field. What is the intensity in terms of $E_{max}$ and universal constants $μ_0, \in_0.$
A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum $p$ and energy $E$, then