The vector $\overrightarrow{O A}$ where $O$ is origin is given by $\overrightarrow{O A}=2 \hat{i}+2 \hat{j}$. Now it is rotated by $45^{\circ}$ anticlockwise about $O$. What will be the new vector?

  • A

    $2 \sqrt{2} \hat{j}$

  • B

    $2 \hat{j}$

  • C

    $2 \hat{i}$

  • D

    $2 \sqrt{2} \hat{i}$

Similar Questions

The sum of three forces ${\vec F_1} = 100\,N,{\vec F_2} = 80\,N$ and ${\vec F_3} = 60\,N$ acting on a particle is zero. The angle between $\vec F_1$ and $\vec F_2$ is nearly .......... $^o$

The coordinates of a moving particle at any time $t$ are given by $x = a\, t^2$ and $y = b\, t^2$. The speed of the particle is

  • [AIIMS 2012]

Can the resultant of $2$ vectors be zero

  • [IIT 2000]

If $A$ and $B$ are two non-zero vectors having equal magnitude, the angle between the vectors $A$ and $A - B$ is

Given that $\overrightarrow A + \overrightarrow B = \overrightarrow C $and that $\overrightarrow C $ is $ \bot $ to $\overrightarrow A $. Further if $|\overrightarrow A |\, = \,|\overrightarrow C |,$then what is the angle between $\overrightarrow A $ and $\overrightarrow B $