- Home
- Standard 11
- Physics
Two vectors $\overrightarrow{ A }$ and $\overrightarrow{ B }$ have equal magnitudes. If magnitude of $\overrightarrow{ A }+\overrightarrow{ B }$ is equal to two times the magnitude of $\overrightarrow{ A }-\overrightarrow{ B }$, then the angle between $\overrightarrow{ A }$ and $\overrightarrow{ B }$ will be .......................
$\sin ^{-1}\left(\frac{3}{5}\right)$
$\sin ^{-1}\left(\frac{1}{3}\right)$
$\cos ^{-1}\left(\frac{3}{5}\right)$
$\cos ^{-1}\left(\frac{1}{3}\right)$
Solution
$\left(a^{2}+b^{2}+2 a b \cos \theta\right)=4\left(a^{2}+b^{2}-2 a b \cos \theta\right)$
put $a$ = $b$ we get
$2 a^{2}+2 a^{2} \cos \theta=8 a^{2}-8 a^{2} \cos \theta$
$\cos \theta=\frac{3}{5}$
Similar Questions
Given below in Column $-I$ are the relations between vectors $\vec a \,$ $\vec b \,$ and $\vec c \,$ and in Column $-II$ are the orientations of $\vec a$, $\vec b$ and $\vec c$ in the $XY-$ plane. Match the relation in Column $-I$ to correct orientations in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ | $(i)$ Image |
$(b)$ $\vec a \, – \,\,\vec c \, = \,\,\vec b$ | $(ii)$ Image |
$(c)$ $\vec b \, – \,\,\vec a \, = \,\,\vec c $ | $(iii)$ Image |
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ | $(iv)$ Image |