Two vectors $\overrightarrow{ A }$ and $\overrightarrow{ B }$ have equal magnitudes. If magnitude of $\overrightarrow{ A }+\overrightarrow{ B }$ is equal to two times the magnitude of $\overrightarrow{ A }-\overrightarrow{ B }$, then the angle between $\overrightarrow{ A }$ and $\overrightarrow{ B }$ will be .......................

  • [JEE MAIN 2022]
  • A

    $\sin ^{-1}\left(\frac{3}{5}\right)$

  • B

    $\sin ^{-1}\left(\frac{1}{3}\right)$

  • C

    $\cos ^{-1}\left(\frac{3}{5}\right)$

  • D

    $\cos ^{-1}\left(\frac{1}{3}\right)$

Similar Questions

Two vectors $\vec A$ and $\vec B$ have equal magnitudes. The magnitude of $(\vec A + \vec B)$ is $‘n’$ times the magnitude of $(\vec A - \vec B)$. The angle between $ \vec A$ and $\vec B$ is

  • [JEE MAIN 2019]

The ratio of maximum and minimum magnitudes of the resultant of two vector $\vec a$ and $\vec b$ is $3 : 1$. Now $| \vec a |$  is equal to

What is the angle between $\overrightarrow P $ and the resultant of $(\overrightarrow P + \overrightarrow Q )$ and $(\overrightarrow P - \overrightarrow Q )$

For the resultant of the two vectors to be maximum, what must be the angle between them....... $^o$

The magnitude of a given vector with end points $ (4, -4, 0)$ and $(-2, -2, 0)$ must be