Two vectors $\overrightarrow{ A }$ and $\overrightarrow{ B }$ have equal magnitudes. If magnitude of $\overrightarrow{ A }+\overrightarrow{ B }$ is equal to two times the magnitude of $\overrightarrow{ A }-\overrightarrow{ B }$, then the angle between $\overrightarrow{ A }$ and $\overrightarrow{ B }$ will be .......................
$\sin ^{-1}\left(\frac{3}{5}\right)$
$\sin ^{-1}\left(\frac{1}{3}\right)$
$\cos ^{-1}\left(\frac{3}{5}\right)$
$\cos ^{-1}\left(\frac{1}{3}\right)$
Two forces $P$ and $Q$, of magnitude $2F$ and $3F$, respectively, are at an angle $\theta $ with each other. If the force $Q$ is doubled, then their resultant also gets doubled. Then, the angle $\theta $ is ....... $^o$
The angle between vector $(\overrightarrow{{A}})$ and $(\overrightarrow{{A}}-\overrightarrow{{B}})$ is :
If $\vec{P}+\vec{Q}=\overrightarrow{0}$, then which of the following is necessarily true?
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is