The velocity of water waves $v$ may depend upon their wavelength $\lambda $, the density of water $\rho $ and the acceleration due to gravity $g$. The method of dimensions gives the relation between these quantities as
${v^2} \propto \lambda {g^{ - 1}}{\rho ^{ - 1}}$
${v^2} \propto g\lambda \rho $
${v^2} \propto g\lambda $
${v^2} \propto {g^{ - 1}}{\lambda ^{ - 3}}$
Consider following statements
$(A)$ Any physical quantity have more than one unit
$(B)$ Any physical quantity have only one dimensional formula
$(C)$ More than one physical quantities may have same dimension
$(D)$ We can add and subtract only those expression having same dimension
Number of correct statement is
A force defined by $F=\alpha t^2+\beta t$ acts on a particle at a given time $t$. The factor which is dimensionless, if $\alpha$ and $\beta$ are constants, is:
The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ Where $P$ is the pressure, $V$ the volume, $\theta $ the absolute temperature and $a$ and $b$ are constants. The dimensional formula of $a$ is
The quantity $X = \frac{{{\varepsilon _0}LV}}{t}$: ${\varepsilon _0}$ is the permittivity of free space, $L$ is length, $V$ is potential difference and $t$ is time. The dimensions of $X$ are same as that of