जल तरंगों का संचरण वेग $v$ उसके तरंगदैध्र्य $\lambda ,$ जल के घनत्व $\rho $ तथा गुरुत्वीय त्वरण $g$ पर निर्भर करता है। विमीय विधि द्वारा इन राशियों में सम्बन्ध होगा
${v^2} \propto \lambda {g^{ - 1}}{\rho ^{ - 1}}$
${v^2} \propto g\lambda \rho $
${v^2} \propto g\lambda $
${v^2} \propto {g^{ - 1}}{\lambda ^{ - 3}}$
एक भौतिक राशि $\vec{S}$ को $\vec{S}=(\vec{E} \times \vec{B}) / \mu_0$ से परिभाषित किया जाता है, जहाँ $\vec{E}$ विद्युत क्षेत्र (electric field), $\vec{B}$ चुम्बकीय क्षेत्र (magnetic field) और $\mu_0$ निर्वात की चुबंकशीलता (permeability of free space) है। निम्न में से किसकी (किनकी) विमाएँ $\vec{S}$ की विमाओं के समान है?
$(A)$ $\frac{\text { Energy }}{\text { charge } \times \text { current }}$
$(B)$ $\frac{\text { Force }}{\text { Length } \times \text { Time }}$
$(C)$ $\frac{\text { Energy }}{\text { Volume }}$
$(D)$ $\frac{\text { Power }}{\text { Area }}$
समीकरण $W = \frac{1}{2}K{x^2}$ में $K$ की विमा होगी
किसी गैस का अवस्था समीकरण निम्न प्रकार दिया जाता है $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ जहाँ $P$ दाब, $V$ आयतन तथा $\theta $ परम ताप है तथा $a$ व $b$ नियतांक है। $a$ का विमीय सूत्र होगा
राशियाँ $A$ और $B$ सूत्र $m = A/B$ से सम्बन्धित हैं। यहाँ पर $m = $ रैखिक घनत्व तथा $A$ बल को प्रदर्शित कर रहा है। $B$ की विमायें होंगी
यंग - लाप्लास के नियमानुसार $R$ त्रिज्या वाले साबुन के बुलबुले के अंदर आंतरिक दाब निम्नलिखित समीकरण द्वारा दिया जाता है : $\triangle P=4 \sigma / R$, जहाँ $\sigma$ साबून का पृष्ठ तनाव स्थिरांक है। एतवोस संख्या (Eotvos number) $E_o$ एक विमाहीन (dimensionless) संख्या है जो द्रव की सतह पर उभरे हुए साबुन के बुलबुले के आकार का वर्णन करता है। यह गुरुत्वीय त्वरण $(g)$, घनत्व $(\rho)$ और लाक्षणिक लंबाई (characteristic length) $L$, जो कि बुलबुले की त्रिज्या भी हो सकती है, के द्वारा निरूपित किया जाता है। $E_o$ का एक संभावित व्यंजक है