According to Newton, the viscous force acting between liquid layers of area $A$ and velocity gradient $\Delta v/\Delta z$ is given by $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ where $\eta $ is constant called coefficient of viscosity. The dimension of $\eta $ are
$[M{L^2}{T^{ - 2}}]$
$[M{L^{ - 1}}{T^{ - 1}}]$
$[M{L^{ - 2}}{T^{ - 2}}]$
$[{M^0}{L^0}{T^0}]$
The quantity $X = \frac{{{\varepsilon _0}LV}}{t}$: ${\varepsilon _0}$ is the permittivity of free space, $L$ is length, $V$ is potential difference and $t$ is time. The dimensions of $X$ are same as that of
If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express length in terms of dimensions of these quantities.
Two quantities $A$ and $B$ have different dimensions. Which mathematical operation given below is physically meaningful