- Home
- Standard 11
- Mathematics
9.Straight Line
hard
The vertices of a triangle are $\mathrm{A}(-1,3), \mathrm{B}(-2,2)$ and $\mathrm{C}(3,-1)$. $A$ new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :
A
$x-y-(2+\sqrt{2})=0$
B
$-\mathrm{x}+\mathrm{y}-(2-\sqrt{2})=0$
C
$x+y-(2-\sqrt{2})=0$
D
$x+y+(2-\sqrt{2})=0$
(JEE MAIN-2024)
Solution

$Image$
equation of $\mathrm{AC} \rightarrow \mathrm{x}+\mathrm{y}=2$
equation of line parallel to $\mathrm{AC} \mathrm{x}+\mathrm{y}=\mathrm{d}$
$ \left|\frac{\mathrm{d}-2}{\sqrt{2}}\right|=1 $
$ \mathrm{~d}=2-\sqrt{2}$
$\mathrm{eq}^{\mathrm{n}}$ of new required line
$x+y=2-\sqrt{2}$
Standard 11
Mathematics
Similar Questions
normal