The vertices of a triangle are $\mathrm{A}(-1,3), \mathrm{B}(-2,2)$ and $\mathrm{C}(3,-1)$. $A$ new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :
$x-y-(2+\sqrt{2})=0$
$-\mathrm{x}+\mathrm{y}-(2-\sqrt{2})=0$
$x+y-(2-\sqrt{2})=0$
$x+y+(2-\sqrt{2})=0$
A point $P$ moves on the line $2x -3y + 4 = 0$. If $Q(1, 4)$ and $R(3, -2)$ are fixed points, then the locus of the centroid of $\Delta PQR$ is a line
Three lines $x + 2y + 3 = 0 ; x + 2y - 7 = 0$ and $2x - y - 4 = 0$ form the three sides of two squares. The equation to the fourth side of each square is
The equation of the lines on which the perpendiculars from the origin make ${30^o}$ angle with $x$-axis and which form a triangle of area $\frac{{50}}{{\sqrt 3 }}$ with axes, are
An equilateral triangle has each of its sides of length $6\,\, cm$ . If $(x_1, y_1) ; (x_2, y_2) \,\, and \,\, (x_3, y_3)$ are its vertices then the value of the determinant,${{\left| {\,\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}\,} \right|}^2}$ is equal to :
The area enclosed within the curve $|x| + |y| = 1$ is