The vertices of a triangle are $\mathrm{A}(-1,3), \mathrm{B}(-2,2)$ and $\mathrm{C}(3,-1)$. $A$ new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :
$x-y-(2+\sqrt{2})=0$
$-\mathrm{x}+\mathrm{y}-(2-\sqrt{2})=0$
$x+y-(2-\sqrt{2})=0$
$x+y+(2-\sqrt{2})=0$
If a variable line drawn through the point of intersection of straight lines $\frac{x}{\alpha } + \frac{y}{\beta } = 1$and $\frac{x}{\beta } + \frac{y}{\alpha } = 1$ meets the coordinate axes in $A$ and $B$, then the locus of the mid point of $AB$ is
The diagonals of a parallelogram $PQRS$ are along the lines $x + 3y = 4$ and $6x - 2y = 7$. Then $PQRS$ must be a
A straight the through a fixed point $(2, 3)$ intersects the coordinate axes at distinct points $P$ and $Q.$ If $O$ is the origin and the rectangle $OPRQ$ is completed, then the locus of $R$ is:
The diagonal passing through origin of a quadrilateral formed by $x = 0,\;y = 0,\;x + y = 1$ and $6x + y = 3,$ is
Area of the rhombus bounded by the four lines, $ax \pm by \pm c = 0$ is :