9.Straight Line
hard

Two sides of a rhombus are along the lines, $x -y+ 1 = 0$ and $7x-y-5 =0.$ If its diagonals intersect at $(-1,-2),$ then which one of the following is a vertex of this rhombus?

A

$\left( {\frac{1}{3}, - \frac{8}{3}} \right)$

B

$\left( { - \frac{{10}}{3}, - \frac{7}{3}} \right)$

C

$\left( { - 3, - 9} \right)$

D

$\;\left( { - 3, - 8} \right)$

(JEE MAIN-2016)

Solution

Equation of angle bisector of the lines $x-y+1=0$ and $7 \mathrm{x}-\mathrm{y}-5=0$ is given by

$\frac{x-y+1}{\sqrt{2}}=\pm \frac{7 x-y-5}{5 \sqrt{2}}$

$\Rightarrow 5(\mathrm{x}-\mathrm{y}+1)=7 \mathrm{x}-\mathrm{y}-5$

and

$5(x-y+1)=-7 x+y+5$

$\therefore 2 \mathrm{x}+4 \mathrm{y}-10=0 \Rightarrow \mathrm{x}+2 \mathrm{y}-5=0$ and

$12 x-6 y=0 \Rightarrow 2 x-y=0$

Now equation of diagonals are

$(x+1)+2(y+2)=0 \Rightarrow x+2 y+5=0$           …….$(1)$

and

$2(x+1)-(y+2)=0 \Rightarrow 2 x-y=0$           ….$(2)$

Clearly $\left(\frac{1}{3},-\frac{8}{3}\right)$ lies on $( 1)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.