Let $A(a, b), B(3,4)$ and $(-6,-8)$ respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point $P(2 a+3,7 b+5)$ from the line $2 x+3 y-4=0$ measured parallel to the line $x-2 y-1=0$ is

  • [JEE MAIN 2024]
  • A

     $\frac{15 \sqrt{5}}{7}$

  • B

    $\frac{17 \sqrt{5}}{6}$

  • C

    $\frac{17 \sqrt{5}}{7}$

  • D

    $\frac{\sqrt{5}}{17}$

Similar Questions

In a right triangle $ABC$, right angled at $A$, on the leg $AC $ as diameter, a semicircle is described. The chord joining $A$ with the point of intersection $D$ of the hypotenuse and the semicircle, then the length $AC$ equals to

Show that the area of the triangle formed by the lines

$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $x=0$ is $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$.

Three lines $x + 2y + 3 = 0 ; x + 2y - 7 = 0$ and $2x - y - 4 = 0$ form the three sides of two squares. The equation to the fourth side of each square is

Triangle formed by the lines $3x + y + 4 = 0$ , $3x + 4y -15 = 0$ and $24x -7y = 3$ is a/an

The $x -$ co-ordinates of the vertices of a square of unit area are the roots of the equation $x^2 - 3 |x| + 2 = 0$ and the $y -$ co-ordinates of the vertices are the roots of the equation $y^2 - 3y + 2 = 0$ then the possible vertices of the square is/are :