The work done in splitting a drop of water of $1\, mm$ radius into $10^6$ droplets is (surface tension of water $72\times10^{-3}\, N/m$) :

  • A

    $5.98\times10^{-5}\, J$

  • B

    $10.98\times10^{-5}\, J$

  • C

    $16.95\times10^{-5}\, J$

  • D

    $8.95\times10^{-5}\, J$

Similar Questions

The rain drops are in spherical shape due to

A wind with speed $40\,m/s$ blows parallel to the roof of a house. The area of the roof is $250\,m^2.$ Assuming that the pressure inside the house is atmospheric pressure, the force exerted by the wind on the roof and the direction of the force will be $(\rho _{air} = 1.2\,kg/m^3)$

Consider a water jar of radius $R$ that has water filled up to height $H$ and is kept on a stand of height $h$ (see figure). Through a hole of radius $r(r < < R)$ at its bottom, the water leaks out and the stream of water coming down towards the ground has a shape like a funnel as shown in the figure. If the radius of the cross-section of water stream when it hits the ground is $x$. Then

A spherical solid ball of volume $V$ is made of a material of density $\rho_1$. It is falling through a liquid of density $\rho_1 (\rho_2 < \rho_1)$. Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed $v$, i.e., $F_{viscous} = -kv^2 (k > 0)$. The terminal speed of the ball is

A cubical block of side $‘a’$ and density ‘$\rho $’ slides over a fixed inclined plane with constant velocity $‘v’$. There is a thin film of viscous fluid of thickness $‘t’$ between the plane and the block. Then the coefficient of viscosity of the thin film will be