9-1.Fluid Mechanics
normal

The work done in splitting a drop of water of $1\, mm$ radius into $10^6$ droplets is (surface tension of water $72\times10^{-3}\, N/m$) :

A

$5.98\times10^{-5}\, J$

B

$10.98\times10^{-5}\, J$

C

$16.95\times10^{-5}\, J$

D

$8.95\times10^{-5}\, J$

Solution

Radius of new droplet if be $\mathrm{r}$ then,

$10^{6} \times \frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \times(0.001)^{3}$

$r^{3}=10^{-15} \Rightarrow r=10^{-5}$

Increase in surface area

$=\left[4 \pi \times\left(10^{-5}\right)^{2} \times 10^{6}\right]-\left[4 \pi \times\left(10^{-3}\right)^{2}\right]$

$\left[4 \pi \times 10^{-4}\right]-\left[4 \pi \times 10^{-6}\right]=4 \pi 10^{-6}[100-1]$

$=4 \pi \times 10^{-6} \times 99=4 \pi \times 10^{-6} \times 99$

Work done

$=$ surface tension $\times$ increase in surface area

$=72 \times 4 \pi \times 99 \times 10^{-6} \times 10^{-3}=8.95 \times 10^{-5} \mathrm{\,J}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.