The Young’s modulus for steel is much more than that for rubber. For the same longitudinal strain, which one will have greater tensile stress ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Young's modulus $=\frac{\text { Tensile stress }}{\text { Longitudinal strain }}$

For the same longitudinal strain, Young's modulus $\mathrm{Y}$ is proportional to tensile stress

$\therefore \quad \frac{\mathrm{Y}_{\text {steel }}}{\mathrm{Y}_{\text {rubber }}}=\frac{(\text { Stress })_{\text {steel }}}{(\text { Stress })_{\text {rubber }}}$

but $\mathrm{Y}_{\text {steel }}>\mathrm{Y}_{\text {rubber }}$

$\therefore \frac{\mathrm{Y}_{\text {steel }}}{\mathrm{Y}_{\text {rubber }}}>1$ $\therefore \frac{(\text { Stress })_{\text {steel }}}{(\text { Stress })_{\text {rubber }}}>1$ $\therefore$ (Stress) $_{\text {steel }}>$ (Stress) $_{\text {rubber }}$

Similar Questions

Two identical solid balls, one of ivory and the other of wet-clay are dropped from the same height on the floor. Which one will rise to a greater height after striking the floor and why ?

Two wires are made of the same material and have the same volume. However wire $1$ has crosssectional area $A$ and wire $2$ has cross-section area $3A$. If the length of wire $1$ increases by $\Delta x$ on applying force $F$, how much force is needed to stretch wire $2$ by the same amount?

Two separate wires $A$ and $B$ are stretched by $2 \,mm$ and $4\, mm$ respectively, when they are subjected to a force of $2\, N$. Assume that both the wires are made up of same material and the radius of wire $B$ is 4 times that of the radius of wire $A$. The length of the wires $A$ and $B$ are in the ratio of $a : b$. Then $a / b$ can be expressed as $1 / x$ where $x$ is

  • [JEE MAIN 2021]

The length of wire becomes $l_1$ and $l_2$ when $100\,N$ and $120\,N$ tensions are applied respectively. If $10l_2=11l_1$, the natural length of wire will be $\frac{1}{x} l_1$. Here the value of $x$ is ........

  • [JEE MAIN 2023]

Four identical hollow cylindrical columns of mild steel support a big structure of mass $50,000 \;kg$. The inner and outer radii of each column are $30$ and $60\; cm$ respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.