एक क्षेत्र में एकसमान स्थिर वैद्युत क्षेत्र उपस्थित है। यहाँ एक बिन्दु $P$ पर केन्द्रित एक गोले के विभिन्न बिन्दुओं पर विभव का मान $589.0 \;V$ व $589.8 \;V$ सीमाओं के बीच पाया जाता है। इस गोले के पृष्ठ पर वह बिन्दु, जिसका त्रिज्या वेक्टर विद्युत क्षेत्र से $60^{\circ}$ का कोण बनाता है, पर विभव का मान क्या होगा ?

  • [JEE MAIN 2017]
  • A

    $589.5$

  • B

    $589.2$

  • C

    $589.4$

  • D

    $589.6$

Similar Questions

किसी वर्ग के चार कोनों पर बिन्दु आवेश $-Q,-q, 2 q$ तथा $2 Q$ क्रमशः रखे गये हैं। $Q$ तथा $q$ के बीच क्या संबंध होना चाहिये, ताकि वर्ग के केन्द्र पर विभव शून्य हो जाए :

  • [AIPMT 2012]

आवेश $Q$ वाले एक ठोस चालकीय गोले को एक अनावेशित चालकीय खोखले गोलीय कवच से घेरा गया है। ठोस गोले के पृष्ठ और खोखले कवच के बाह्म पृष्ठ के बीच विभवान्तर $V$ है। यदि कवच को अब एक आवेश $-4 Q$ दिया जाता है, तब उन्ही दोनों पृष्ठों के बीच नया विभवान्तर ........$V$ होगा।

  • [JEE MAIN 2019]

चाँदी (परमाणु संख्या = $47$) के नाभिक की त्रिज्या $3.4 \times {10^{ - 14}}\,m$ है। नाभिक की सतह पर विद्युत विभव होगा $(e = 1.6 \times {10^{ - 19}}\,C)$

­x­-अक्ष पर प्रत्येक बिन्दुओं $x = {x_0},\,x = 3{x_0},\,x = 5{x_0}$.....$\infty$ पर आवेश q रखा है एवं बिन्दुओं $x = 2{x_0},\,x = 4{x_0},x = 6{x_0}$, …$\infty$ पर दूसरा आवेश -q रखा है, यहाँ ${x_0}$ धनात्मक नियतांक है। यदि किसी आवेश $Q$ से $r$ दूरी पर विभव का मान $Q/(4\pi {\varepsilon _0}r)$ हो तो उपरोक्त आवेशों के निकाय के कारण मूल बिन्दु पर विभव होगा

  • [IIT 1998]

एक पतले गोलीय कोश (shell) का केन्द्र उद्गम पर है व त्रिज्या $R$ है। उस पर धनावेश इस प्रकार वितरीत है कि पष्ठ-घनत्व एकसमान है। विधुत क्षेत्र के मान $|\vec{E}(r)|$ और विधुत -विभव $V(r)$ का , केन्द्र से दूरी $r$ के साथ बदलाव का सर्वोत्तम वर्णन किस ग्राफ में है।

  • [IIT 2012]