$5 \times 10^{-8}\, C$ तथा $-3 \times 10^{-8} \,C$ के दो आवेश $16\, cm$ दूरी पर स्थित हैं। दोनों आवेशों को मिलाने वाली रेखा के किस बिंदु पर वैध्यूत विभव शून्य होगा? अनंत पर विभव शून्य लीजिए।
There are two charges,
$q_{1}=5 \times 10^{-8} \,C$
$q_{2}=-3 \times 10^{-8} \,C$
Distance between the two charges, $d =16 \,cm =0.16 \,m$
Consider a point $P$ on the line joining the two charges, as shown in the given figure.
$r=$ Distance of point $P$ from charge $q_{1}$ Let the electric potential $(V)$ at point $P$ be zero. Potential at point $P$ is the sum of potentials caused by charges $q_{1}$ and $q_{2}$ respectively.
Where, $\therefore V=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{r}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(d-r)} \dots(i)$
$\varepsilon_{0}=$ Permittivity of free space For $V =0,$ equation $(i)$ reduces to $0=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{r}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(d-r)}$
$\Rightarrow \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{r}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(d-r)}$
$\Rightarrow \frac{q_{1}}{r}=-\frac{q_{2}}{(d-r)}$
$\Rightarrow \frac{5 \times 10^{-8}}{r}=-\frac{\left(-3 \times 10^{-8}\right)}{(0.16-r)}$
$\Rightarrow 5(0.16-r)=3 r$
$\Rightarrow 0.8=8 r \Rightarrow r=0.1 \,m =10 \,cm$
Therefore, the potential is zero at a distance of $10 \;cm$ from the positive charge between the charges. Suppose point $P$ is outside the system of two charges at a distance s from the negative charge, where potential is zero, as shown in the following figure.
For this arrangement, potential is given by,
Where, $V=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{s}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(s-d)} \ldots (ii)$
$\varepsilon_{0}=$ Permittivity of free space For $V=0,$ equation (ii) reduces to $0=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{s}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(s-d)}$
$\Rightarrow \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1}}{s}=-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{2}}{(s-d)}$
$\Rightarrow \frac{q_{1}}{s}=-\frac{q_{2}}{(s-d)}$
$\Rightarrow \frac{5 \times 10^{-8}}{s}=-\frac{\left(-3 \times 10^{-8}\right)}{(s-0.16)}$
$\Rightarrow 5(s-0.16)=3 \,s$
$\Rightarrow 0.8=2 \,s \Rightarrow s=0.4 \,m =40\, cm$
Therefore, the potential is zero at a distance of $40 \,cm$ from the positive charge outside the system of charges.
एक आवेशित तार से बनाई गयी चाप की त्रिज्या $r$ है, आवेश घनत्व $\lambda$ है एवं चाप के द्वारा केन्द्र पर बनाया गया कोण $\frac{\pi }{3}$ है। केन्द्र पर विभव होगा
$2 \,cm$ त्रिज्या की $64$ सर्वसम बूँदों में प्रत्येक पर ${10^{ - 9}}\,C$ आवेश रखा जाता है। अब उन्हें संयुक्त कर एक बड़ी बूँद बनायी जाती है। इसका विभव ज्ञात कीजिए
$L$ भुजा व $O$ केन्द्र वाले एक समबाहु षट्भुज के कोनों पर $6$ बिन्दु-आवेश चित्र में दर्शाये अनुरूप रखे है। $K =\frac{1}{4 \pi \varepsilon_0} \frac{ q }{ L ^2}$ को मानकर निर्धारित करें कि कौन प्रकथन सही है/हैं
$(A)$ $O$ पर विधुत क्षेत्र $6 K$ व $O D$ दिशा में है।
$(B)$ $O$ पर विभव शून्य है।
$(C)$ लाइन $PR$ पर सब जगह विभव समान है।
$(D)$ लाइन $ST$ पर सब जगह विभव समान है।
चार आवेश $ + Q,\, - Q,\, + Q,\, - Q$ एक वर्ग के चारों कोनों पर क्रम में रखे हैं। वर्ग के केन्द्र पर
एक टेबल-टेनिस गेंद पर चालक पदार्थ का लेप चढ़ाकर एक धागे की सहायता से दो धात्विक प्लेटों के बीच लटकाया गया है। एक प्लेट भू-सम्पर्कित है। जब दूसरी प्लेट को उच्च वोल्टेज जनरेटर से जोड़ा जाता है तो गेंद