Three charges, each $+q,$ are placed at the comers of an isosceles triangle $ABC$ of sides $BC$ and $AC, 2a.$ $D$ and $E$ are the mid-points of $BC$ and $CA.$ The work done in taking a charge $Q$ from $D$ to $E$ is
$\;\frac{{3qQ}}{{4\pi {\varepsilon _0}a}}$
$\;\frac{{3qQ}}{{8\pi {\varepsilon _0}a}}$
$\;\frac{{qQ}}{{4\pi {\varepsilon _0}a}}$
zero
Two particles each of mass $m$ and charge $q$ are separated by distance $r_1$ and the system is left free to move at $t = 0$. At time $t$ both the particles are found to be separated by distance $r_2$. The speed of each particle is
When three electric dipoles are near each other, they each experience the electric field of the other two, and the three dipole system has a certain potential energy. Figure below shows three arrangements $(1)$ , $(2)$ and $(3)$ in which three electric dipoles are side by side. All three dipoles have the same magnitude of electric dipole moment, and the spacings between adjacent dipoles are identical. If $U_1$ , $U_2$ and $U_3$ are potential energies of the arrangements $(1)$ , $(2)$ and $(3)$ respectively then
Two identical thin rings each of radius $R$ meters are coaxially placed at a distance $R$ meters apart. If $Q_1$ coulomb and $Q_2$ coulomb are respectively the charges uniformly spread on the two rings, the work done in moving a charge $q$ from the centre of one ring to that of other is
Obtain equation of electric energy of a single charge.
A conducting sphere of radius a has charge $Q$ on it. It is enclosed by a neutral conducting concentric spherical shell having inner radius $2a$ and outer radius $3a.$ Find electrostatic energy of system.