Three charges, each $+q,$ are placed at the comers of an isosceles triangle $ABC$ of  sides $BC$ and $AC, 2a.$ $D$ and $E$ are the mid-points of $BC$ and $CA.$ The work done in taking a charge $Q$ from $D$ to $E$ is

115-714

  • [AIPMT 2011]
  • A

    $\;\frac{{3qQ}}{{4\pi {\varepsilon _0}a}}$

  • B

    $\;\frac{{3qQ}}{{8\pi {\varepsilon _0}a}}$

  • C

    $\;\frac{{qQ}}{{4\pi {\varepsilon _0}a}}$

  • D

    zero

Similar Questions

Two insulating plates are both uniformly charged in such a way that the potential difference between them is $V_2 - V_1 = 20\ V$. (i.e., plate $2$ is at a higher potential). The plates are separated by $d = 0.1\ m$ and can be treated as infinitely large. An electron is released from rest on the inner surface of plate $1. $ What is its speed when it hits plate $2?$
$(e = 1.6 \times 10^{-19}\ C, m_e= 9.11 \times 10^{-31}\ kg)$

  • [AIEEE 2006]

A charged particle $q$ is shot towards another charged particle $Q$ which is fixed, with a speed $v$. It approaches $Q$ upto a closest distance $r$ and then returns. If $q$ were given a speed $2v$, the closest distances of approach would be

  • [AIEEE 2004]

A bullet of mass $m$ and charge $q$ is fired towards a solid uniformly charged sphere of radius $R$ and total charge $+ q$. If it strikes the surface of sphere with speed $u$, find the minimum speed $u$ so that it can penetrate through the sphere. (Neglect all resistance forces or friction acting on bullet except electrostatic forces)

In a region, electric field varies as $E = 2x^2 -4$ where $x$ is the distance in metre from origin along $x-$ axis. A positive charge of $1\,\mu C$ is released with minimum velocity from infinity for crossing the origin, then

If one of the two electrons of a $H _{2}$ molecule is removed, we get a hydrogen molecular ion $H _{2}^{+}$. In the ground state of an $H _{2}^{+}$, the two protons are separated by roughly $1.5\;\mathring A,$ and the electron is roughly $1 \;\mathring A$ from each proton. Determine the potential energy of the system. Specify your choice of the zero of potential energy.