1. Electric Charges and Fields
hard

Three charges $ - {q_1},\,\, + {q_2}$ and $ - {q_3}$ are placed as shown in the figure. The $x$-component of the force on $ - {q_1}$ is proportional to

A

$\frac{{{q_2}}}{{{b^2}}} - \frac{{{q_3}}}{{{a^2}}}\,\sin \theta $

B

$\frac{{{q_2}}}{{{b^2}}} - \frac{{{q_3}}}{{{a^2}}}\,\cos \theta $

C

$\frac{{{q_2}}}{{{b^2}}} + \frac{{{q_3}}}{{{a^2}}}\,\sin \theta $

D

$\frac{{{q_2}}}{{{b^2}}} + \frac{{{q_3}}}{{{a^2}}}\,\cos \theta $

(AIEEE-2003)

Solution

(c) ${F_2}$ $=$ Force applied by ${q_2}$ on $ – {q_1}$
${F_3}$ $=$ Force applied by $( – {q_3})$ on $-{q_1}$
$x-$component of Net force on $ – {q_1}$ is
$F_x = F_2 + F_3 sin\theta$ $ = k\frac{{{q_1}{q_2}}}{{{b^2}}} + k.\frac{{{q_1}{q_3}}}{{{a^2}}}\sin \theta $
$==>$ ${F_x} = k\,\left[ {\frac{{{q_1}{q_2}}}{{{b^2}}} + \frac{{{q_1}{q_3}}}{{{a^2}}}\sin \theta } \right]$
$==>$ ${F_x} = k \cdot {q_1}\,\left[ {\frac{{{q_2}}}{{{b^2}}} + \frac{{{q_3}}}{{{a^2}}}\sin \theta } \right]$ $==>$ ${F_x} \propto \,\left( {\frac{{{q_2}}}{{{b^2}}} + \frac{{{q_3}}}{{{a^2}}}\sin \theta } \right)$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.